QUALITY REQUIREMENTS FOR PV POWER PLANTS FROM PLANING TO OPERATION LESSONS LEARNT ON TURKISH MARKET

Klaus Kiefer & Andreas Steinhueser

Fraunhofer-Institut für Solare Energiesysteme ISE

EMO Conference Izmir, October 17th, 2019

Dr. Mete Çubukçu Sertan Ünalan & Anıl Akanalçı SolarMENA Energy Ltd.

PV Power Plants General requirements of stakeholders

Understanding of quality for different stakeholder

- Investor expects maximum yield and low risk
- Bank wants to get their money back
- EPC or System operator wants a high Performance low maintenance and repair cost

This leads to the following technical requirements

- State-of-the-art system design
- High efficient and reliable components
- Long-term stable and continuous high Performance

PV Power Plants Quality Assurance Services

Quality Assurance of PV Power Plant in Turkey Lessons learnt

- 80 different PV Power Plants in in very different regions in Turkey
- with 450 MWp in total

Special challenges in Turkey Project development

hilly and stony landscape

Requirements

Proper Analysis of horizontal shading

Special challenges in Turkey Example

PV Power Plant realized in such a difficult area at Kayseri

Special challenges in Turkey Project development

Locations with strong dust generation in the environment of animal food production

Special challenges in Turkey Project development

Locations with heavy snowfall

Quality Assurance for PV Power Plants Yield assessment as basis for the financial assessment

Quality Assurance for PV Power Plants Yield assessment as basis for the financial assessment

Calculation step

- independent, accurate simulation
- detailed documentation with validated results

	Irradiation global horizontal	5.0%	1550	kWh/m ²
	Irradiation on tilted surface	2.5%	1821	kWh/m²
	Shading			
	External Shading	0.5%	1803	kWh/m²
	Internal Shading	2.0%	1765	kWh/m²
	Soiling	1.0%	1739	kWh/m²
	Reflection losses	0.5%	1695	kWh/m²
	Deviation from STC operation of modules			
	Spectral losses	1.0%	1661	kWh/kWp
	Irradiation-dependent losses	1.0%	1682	kWh/kWp
	Temperature-dependent losses	1.0%	1634	kWh/kWp
	Interconnection losses (mismatch)	0.5%	1602	kWh/kWp
	Cabling losses	0.5%	1579	kWh/kWp
	Inverter losses	1.5%	1538	kWh/kWp
	Power limitation of inverter	0.5%	1538	kWh/kWp
	Transformer	0.0%	1538	kWh/kWp
Fraunhofer				2.5
average everem	Total	6.5%	1538	kWh/kWp
	 * Uncertainties are related to single stand 	dard deviation		
mander the Charters of a Constitute	** Gain/Los : energetic Gain / Loss accord	ing to the step of a	alculation of	the simulation

** Gain/Los : energetic Gain / Loss according to the step of calculation of *** PR: Performance Ratio

Uncertainty*

Value Unit

Gain/Loss**

17.5%

-1.0%

-2.1%

-1.5%

-2.5%

1.3%

-2.9%

-2.0%

-1.4%

-2.6%

0.0%

0.0%

Visid for the PV system

PR***

100.0%

99.0%

96.9%

95.5% 93.1%

91.2%

92.4%

89.7%

88.0%

86.7%

84.5%

84.5%

84.5% 84.5%

Field experience Yield Prediction / Irradiance Data

- In order to minimize uncertainty we compare irradiation data from different sources
 - Solargis
 - meteocontrol/Uni Oldenburg
 - PVGIS
 - possibly further

Solar

> We use last 10 years for our Yield prediction.

Field experience Yield Prediction / Low light Performance

- high uncertainty on data sheet and manufacturer data
- By use of insufficient module data the yield/revenue can be under- or overestimated by 2 to 3 %

Lab tests of modules ensures that input parameters are reliable and input to financial models are correct.

Quality Assurance for PV Modules Experiences from the field

Known failure mechanisms

Quality Benchmarking for PV Modules The Procedure

Module Testing Performance verification | Power at STC

Lessons learnt from 80 MW project

- 300.000 Modules * 265 Wp
- Total Investment: 55 Mio. EUR

Result

- Too less Power of 1.5 MW= 2.3 Mio TRY
- Too less Energy within 20 Years
 = 22.8 Mio TRY

Cost for Tests: 50.000 TRY

PV Power Plants Quality Assurance Services

Quality Assurance during Construction

Unprofessional handling of the solar modules during their installation

Quality Assurance during Construction

Unprofessional Mounting of the PV Modules

Quality Assurance for PV Modules Wind and Thunderstorm Damages

- More than 40% of claim expenses are due to mechanical weakness and insufficient lightning protection [1]
- Our experience: More than half of the failure analysis projects are directly or indirectly related to cell cracks

> Mechanical testing of module type and mounting structure ensures compability of the component

[1]Source: German Insurance Association (GDV) / https://www.gdv.de/resource/.../download-dt--broschuere-erneuerbare-energien-data.pdf

Quality Assurance during Construction

- Helps to detects installation errors very early
- allows to correct this failures

Deviations from the state of the art could be eliminated even before the final acceptance test

ola

Final Acceptance Test

With a lifting platform we can overlook the whole area from a bird's eye view

Final Acceptance Test

With infrared images it is possible to identify defective modules very efficiently

Solar

MENA

Final Acceptance Test

With infrared images it is also possible to identify faults in combiner boxes

Final acceptance tests of the PV Power Plant are reducing technical risks during commissioning and start of operation

Final Acceptance Test Performance Evaluation

Plant performance: modelled vs. measured data

comparison and results

Comparison of actual (measured) and expected (modelled) PR

Final Acceptance Test Performance Evaluation

- The greatest weakness in all of the PV Power Plants Plants we investigated is the non-existent or incomplete monitoring
- Incorrect installation of irradiation sensors

Evaluation of Performance Ratio

- Precise Irradiance Measurement
- Highly available Data Acquisition System

Evaluation of Performance Ratio PV Power Plant in Mersin

Location with strong dust generation in the environment of animal food production

- Roof Top: 4.2 MWp
- Ground mounted: 11.4 MWp

Evaluation of Performance Ratio PV Power Plant in Mersin

- Monitoring with a precise Irradiance Measurement
- Soiling measurement on-site
 - PV reference cell with an automatic cleaning system
 - PV reference module which accumulates soiling

Evaluation of Performance Ratio PV Power Plant in Mersin

Correlation between soiling and Performance

The effects of cleaning are clearly visible

Based on the monitoring data

the cleaning of the modules can be carried out in a controlled procedure

Final Acceptance Test Performance Evaluation

Comparison of the Expected and the measured Performance (first year of operation)

- Performance all over the subsystems is good and slightly over the prediction value (blue bar)
- Soiling monitoring leads to a reliable long-term Performance

Conclusion

Independent Quality Assurance increase the confidence of all stakeholders including Investors, banks, insurance companies and EPCs

- Quality Assurance should start from the beginning of the project
- Support of experts during project development and engineering helps to avoid failures
- To ensure long-term operation with a high performance a precise monitoring is needed

Solar

Thank You Very Much for Your Attention!

Klaus Kiefer

Fraunhofer-Institut für Solare Energiesysteme ISE

klaus.kiefer@ise.fraunhofer.de www.ise.fraunhofer.de Dr. Mete Çubukçu

SolarMENA Enerji ve Çevre Tek. Ltd. İzmir / Turkey

mc@solarmena.com.tr

www.solarmena.com.tr

